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aABSTRACT

The paper analyzes the h-p version of the finite element method in

two dimensions. It proves that the error 1ellE of the method measured in
-3

the energy norm decreases exponentially: f ellE ! Ce where N is the

number of degrees of freedom. The exact solution, which is approximated by

2,2
the finite element method, is assumed to belong to the space B . This

'.S.

space contains the solutions of the problems of elliptic partial differential

equations with piecewise analytic data, such as, when the domain has corners,

the boundary conditions and the coefficients of the equations are piecewise

analytic, etc. Extensive computational analysis with the code PROBE, shows

the practical effectivity of the h-p version,-and the applicability

of the theoretical asymptotic error estimates in the range of engineering

computations and accuracy.
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1. INTRODUCTION

The h, p and h-p versions are the three basic approaches of the finite

element method when the finite dimensional subspace is composed of piecewise

* polynomials defined on a partition of a given domain. The convergence is

achieved by increasing the dimension of the finite element subspace in three

*, different ways.

The first one is called the h-version when the degree p of the

i polynomials is fixed (at a low value) and the mesh size h is reduced to

obtain the desired accuracy. The h-version has been investigated theoretically

and practically for many years. There are many computer programs of the

h-version which are used in engineering. One of the popular codes is for example

-. NASTRAN in its various versions, e.g. MCS/NASTRAN and others are ADINA, ANSYS,

etc.

In the p-version the mesh is fixed and the degree p of the polynomials

is increased in order to reduce the approximation error. The development of

the p-version is very recent. PROBE is currently the only commerical code

(released in 1985) using the p and h-p versions.

The h-p version combines the h and p-versions.

The p-version was first theoretically studied in [ 7 1. The h-p version

was addressed in f31. It was conjectured there that it is possible to achieve

exponential rate convergence in the cases of practical importance. For

additional features of the p-version we refer also to [ 6]. The p-version

in three dimensions was analyzed in 112], 113] and for the detailed analysis

, *of the p and h-p version in one dimension see [16 1. For the engineerinas

and implementational aspect of the p and h-p version we refer to [4].
asec
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It has been proven that the rate of convergence for the p-version

cannot be worse than that of the h-version with a quasiuniform mesh 17].

If the singularity of the solution is located at vertices, then the rate of

convergence of the p-version is at least twice that of the h-version with

quasiuniform mesh. It will he shown in this paper that under proper assumptions

satisfied usually in practice, the h-p version has exponential rate

of convergence with respect to the number of degrees of freedom, while the

h and p-versions have only a polynomial rate [2].

The singular behaviour of the solution of partial differential equations

of elliptic type is typically caused by piecewise smoothness of the input

data, by the corners and edges of the domain,etc. Usually, in practice the

data are piecewise analytic functions.

In Chapter 2 we introduce the spaces H kZ (0) (kZO) which are a

generalization of the weighted Sobole' spaces used in [5]. The main tool

of the analysis in the present paper is the countable normed space

B,d ( ) which consists of all functions u belonging to H ' (Q) for all k

and 11 ull k . Cdk'(k-)! (Y=0,1,2). It can be shown L171 that the
H k, _
B

solutions of partial differential equations of elliptic type with piecewise

analytic data belong to this space.

Some imbedding inequalities relatedto the spaces H 2 (Q) are derived in

- Chapter 3.

The accuracy of the finite element method reduces to an approximation problem

when the coercivity or the "inf-sup" condition is satisfied 121 L1]- We will

study the approximation (in the space H1 ) of functions u B2 ,d 2) by

the h-p version and will show that exponential rate of convergence with

respect to the number of degrees of freedom can be achieved.

In Chapter 4 we analyze approximation. properties of the polynomials on a

single square and a parallelogram.
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In Chapter 5 a geometric mesh on a square and a parallegram is introduced

and the exponential rate of the convergence of the h-p version is proven.

Chapter 6 generalizes the results of chapter 5 by introducing general

geometric meshes composed of curviLinear quadrilateralsand triangles.

The last chapter addresses the numerical results and the performance of

the h-p versions by the computational analyzis of an elasticity problem by

the code PROBE.

'

.5
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2. NOTATION AND PRELIMINARIES

We shall denote integers by i, j, k, k, m and n, and by IR and

M 2 we shall denote the one and two dimensional Euclidean space with

x = (Xlx 2) or x = (x,y). If Q is any one or two dimensional set, Q

denotes its closure. By &I we denote a polygonal domain in IR2  with the

boundary a 1 -, the vertices A., 1 < i < M and ri, 1 < i < M the open
M _

edge of 3 linking Ai and Ai,(A 0 = AM). We have = U ri' where r is
i'1

the closure of ri The measure of the interior angle of R at A. is

denoted by wi"

By H?(&) (resp. Hm(IR 2)) (m -0) we denote the Sobolev space of

functions on S (resp. M ) with square integrable derivatives of order

*!-m (m O) furnished with the norm

H m(2) 1I:5m L2(2)

.where a . 0, i = 1,2, integers, j = a1 + a2, and

a 1 1 229a

ax l x2 l a 2
1 2 1 2

As usual H (Q) = L2 (Q). Further we will use the notation

(w)

and

IDmul l aID=ul2

By ri(x) we shall denote the Euclidean distance between x and the

vertex Ai of 0. Let 8 18 ,82...$M) be an M-tuple of real numbers,
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0 < <i <1 1 i5 M. For any integer k we shall write
M (.

3 + k +k, 2+k, ,, k) We denote (x) T[ r1(x) and

m i.k i--1
'.k (x). "-ri1  (x).

i=l

By H 8 " . ( , m> 2 >_ 0 (Hm'0(2) = hP(P)) we denote the completion of

the set of all infinitely differentiable functions under the norm
K 2 m [

u2 . - + k=21D ku(x)j2 P2 (x)dx (2 z 1)
11' U11 u1 U11 ' 04) + a k=z a *+k-Z

and

2lim 2UI ID0 kf iU(x)1
2  D(32k(x)dx (z. 0).

For m Z . 0, H0,0' )- Lv2(). Analogously as before

m ,

== 2+kzI (x)dx.

Hs H () k=0

The space H m,2 ) was introduced in D3 1 where its various properties were

studied. Let us mention the following lemma proven in [51 which will be needed

r later.
2 2 0-

Lemma 2.1. H5 (0 ) C C(Q) with continuous imbeddings i.e.,

suplul CIIUIIk2 2

I X'l ()

where C depends on Q but is independent of u.

Let

2. sup)u <-Ill2ll2 2

'an.. and

V...........................***C
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(2.2) B (Q) {u(x) lu E T , (iu 2  2 d./2 Cd(k-Z)(kZ)!JQB+k.-t j - d k

for Il= k = ,Z+i,.... 0 < t 5 2, d _ 1, constants

C and d independent of k}

be the countably normed spaces (see [15]). For k = 0 we shall write

B ( ) instead of B0(.Q). The functions in B (2) are characterized by

different constants C and d. If we would like to emphasize the dependence

on the constant d we will write B0  (9) = B (), etc.

The weighted Sobolev spaces Hs (2. ) of a non-integral s are defined as

the interpolation spaces. Let B denote the category of all H (n),

k = 2,+1.... B is a sub-category of N, which denotes the category of
k,k k+l ,t

all Banach spaces, Hk (0) (k >t 0) is a normed space, and Hl (2) C

H k, (2). Hence A =+(H 'l(), Hk 'e(2)) is compatible couple in B. By

the application of the K-method, we define the interpolation space (see [10]):

(H '(Q), H k (0)), = H k+0(,2 ), 0 < a < 1.

It is easy to verify that if u E B Z (2), then for any k Z 2,

< cd+ -g 1/2
(2.3) Hull k+d, (k+8) / (k+l-2+e)H 01)
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3. SOME IMBEDDING INEQUALITIES

We shall generalize some imbedding inequalities provenin [2] [3]

T be a rectangle (resp. triangle) with vertices (xi,Y), 1 5 i 5 4 (resp.

1 _ i _< 3); (xlyl) is supposed to be the origin. Let h and h be

the length of the longest and shortest side of T, w. be the measure
1

of the angles of T, 1 _< i _5 4 (resp. 3). We assume that there are constants K

and w0 > 0 such that for all rectangles (resp. triangles) under consideration

h/h S < <

and

0 < W0 f i f-- W0 < 7T.

k -
Let Y be the boundary or some sides of T, Hy) = IH (Yi), k = 0,1

i=l

and M f 4 (resp. M f 3) where y ivs are the sides of T, and Hk(Y.) is the

11
Sobolev space on Y

Lemma 3.1. Let u E H2 (T), and u vanishes at vertices of T, then u H Hl(y)

and

2
*(3.1) 11111I1 Chluj 2

H1 (Y) H(T)

Proof. Let S be the standard square (0,1) x (0,1). We obtain by the

standard imb.dding theorem (with C > 0 independent of u):

., -. q' -,' ... -.-.. .. ..... ,....,.... '. '.. ° . , . . , . . -. -. - -, - , -. -, ... . . - ,,
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Hull 2  ClIull 1 C 12 + 1u 2  )
P22

L Y)H(S.) H1 (.s). L()

U12 < c u12
2  + lul 2  ).

HCy) H(S) H(S)

Since u vanishes at vertices of S, there is some C1 > 0 independent

of u (see [11 ,[2] ,lll])such that

-lul ~u
IlUlL2 (S) H2 (S)

and

ul 2 C Iu l 2
H (S) H (S)

'- Hence

-" The usual scaling argument yields (3.1). The proof for the triangle is

the same.

:" ~2,2() {

Lemma 3.2. Let u E H IS (T) with 4 - r , 0 < < 1 and u vanishes at

-the vertices of T. If y is a side of T seoarated fram origin then

!i ( 3 2 ) lu rl l )h1 - 2 9 , 2

(3.2) l Y) 5 h4UPH2,2 (T).

Proof: Let S be the standard square (0,1) x (0,1) and S = (0,1) x (1/2,1).

Suppose y is the top edge of S. We have by applying Lemma 3.1 (see also

• " .. '.'.' -,.- ..-... ,-- .......-.....-.-....-......-.-.-............-..-...-....,..-.......-..,..%, • .", -. . .'
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* Lemma 2.1):

S(y) H- (SI)

_< C jul
C H 22(S).

*The scaling argument yields (3.2).

Lemma 3.3. Let Yi be the sides of T, 1 _< i f- 4 (resp. 1 _ i 3, for

. the right angle triangle). Assume that Y, lies on x-axis and that v(x)

is a polynomial degree D on YI and that v vanishes at the endpoints

of yI. Then there exists a polynomial V(xy) of degree p in x and

degree 1 in y such that V = 0 on (i' (i * 1) and V = v on YI, and

(3.3) 1v 2 ChjH2HJI 1 < ChIlvU21

H (T) H (y)

with C independent of h, v and T.

d Proof. Let T = 10,1] x 10,1] and y1 {(x,O) I 0 < x < 1 }. Set

V(x,y) - v(x)(1-y).

Obviously V(x,l) = V(O,y) = V(l,y) = 0 and V(x,O) = v(x). V(x,y) is

a polynomial of degree p in x and degree 1 in y, and

IVfi2 1 C(1fv,, 2
2  + lVI 2 l )

"

H1 (S) L (y) H (Y1

I

m 'g', .- ., ., ,. -..v'. .,-. * -,'4f.- . -' ...'..:,.'...-- * *- .-, , .' . ... -.. * .., , ~. v -" .-, .. . ... . "".'_- " .v. " -- "- "- - .
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Since v(0) = v(1) 0, we have

1!ii 72 < c lv i 2
L 2 (y 1 ) H (y 1 )

Using the scaling argument we obtain (3.3) for the rectangle. E

The proof for triangle T can be found in [5], [7].

2,2Lemma 3.4. The space H (T),4= r 0 < a < I is compactly imbedded

* in the space HI(T).

Proof. Let u EH 2'(T) and assume first that u(0) = 0. Let (rO) be

the polar coordinates and v = ru. Then

v 2 r u a2' 0 Ca 2 < 2,
a2  a

5 8-lu
v 2  r u + ur , 0 a
re 2 re ae

v 2 =ru 2 + 2r u-lur + S(-l)r B-2u
r r

Since u(0) = 0 we have by Lemma 8 of [3 1 (or Lemma 4.3 of [5 ])

ir "u r -0 CIlu ll H 2 (T)
H (T)

jjr Ill-2cull 0ST) -l C5Ir B-ID1UP .- C11 uJ 2 2

H (T) H (T) H0 ' (T)
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where we denoted

p

lu i ID2ul2 1/2

This implies that v E H 2(T). Suppose now that {u.} is a bounded
J j=l

sequence in 2,2 (T) and u"(G)= 0. Then = j 2, 2.....is

uniformly bounded in H 2(T). Because the space H 2(T) is compactly

* imbedded in the Sobolev space WIlq(T) for any 1 < q < , ther exists

subsequence denoted again by {v.} which converges to W E in
j (T)

W (T) andvi(O) 0. Let u = r v. Then

ur v - v x

x x r

= -4- -S-i- Y
uy r v -S r V r

and since v(O) we have

1jr v _j 0 dr- Dlil 0

H (T) H (T)

Hence

1'D
JID 01 0 <C11r jH° (T) -- H( T)

by HIlder inequality

1_ 1

5 C Ijr PI~ P 01 (Dl v )qII q
H0 (T) H(T)

Cjjr- Pjj l I. 2q I

(T) W 2q)

N N N % N %
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where 1 +1 =1 , p > 1 and $p < i and hence u E HI(T).
p q

Similarily we have
,%

flu-I liv -V'i - 0 as j
", H (T) ,2q (T)

1" and hence fu.} is a convergent sequence in H (T).
i wi

If u (0) 0 then we define u. = uj- u. (0). Then using Lemma 2.1

we have

2, CH ' 1 , and jui(0)1 i 
< CH~U 112,

"l 1H2, 2(T) H (T) a Iu2,) (T)

Using the first part of the proof there is a subsequence, once more denoted

by u such that u (0) - A and uj - u in H I(T). This completes the proof.

, Lemma 3.5. Let T be a triangle with vertices (xjYi) 1 :- i < 3 and x,= Y 0.
2,2(T wh 8 22,  -2

If u E Ha (T) with P 2,2 0 E a < 1, (H ' (T) = H (T) for S = 0),

and v is the linear function interpolating u at vertices (xi.,y )

o1 f: i f: 3, then

(3.4) llu-vI1 - Ch1-a ul (T)
H(T) 2(T)

and

(3.5) llu-vll 2 2 < cli11 2 2
H (T) H'-(T)

with C independent of u and T.

4 Proof. If S = 0 then the lemma is standard t21. i11. Let S he a satandard

U.. %% %.Ve'U. . .F.. . . . .F.e*...- .
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triangle { (x,y) I 0 < y < l-x, 0 < x < i with vertices (x iYi),

1 < i _< 3, and let U E H '2 (5) with 0 - ro and V be the linear

interpolation of U ( which exists because of Lemma 2.1). We first prove

that for a constant C independent of U

( 3 .6 ) H l l 2  < _ C ( IU I 2  + U x i Y ) 2 .

2H2(S) 2H2(S) i=1

29

'Suppose that (3.6H is false, then there exists U2 E H.. 1,..

such that

2

( 3 .7 ) 2U 1 1 H 2

H '(S)

and

2 3 2
(3.8) uj 2  + I jU(x,Y)12 - 0 as j

S2,2 
i=l J

H ' (5)

Since H (S) is compactly imbedded in H 2'2(S), by (Lemma 3.4), ther,?

exists a subsequence denoted again by {U.} which is convergent in H (S).

(3.8) shows that {U.} is Cauchy sequence in H2,2 (S). By the argument similar

to that in the previous lemma, we can show that there is a subsequence once

S Uj2
more denoted by U that jr U I is a Cauchy sequence in H (S),

rU. -) V in H2 (S) and U. = V E H2 2 (S) as j - n* Since

J Il 22 - 0, Daii = 0 for Ju = 2. Therefore U is a linear functin

of (S)
2,2

of S. Because H 2(S) C C0(S) by Lemma 2.1 and U (xiYi 0 as j

1 - i _ 3, U vanishes at vertices (xi Y Hence the linear function

"ii

U 0 on S, which is a contradiction to (3.7).

Applying (3.6) to (U - V) we have

.5.

Ce

,,...-.-o.-. . ','_.+'%- .- +.,' .'"..v"','S-'5 , 'L.''.. .V . . . .:. ,"-".",. '" .. .,"," . ."."-"C.v v -f.'""-"-','"
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IlU - V1 2,2(S) 5 ClU - V1 2,2 (S ) CU 2 (S )H' (5)HIHS)

and

VIIU-VI 1 1[!U-V11 2%2 CIj2,2
HU(S) H (S) H 2 (S)

By the standard scaling and mapping argument, we get (3.6) and (3.7).

Lemma 3.6. Let T be a rectangle with vertices (xiyi), 1 < i _< 4 and

X Y 0. If u f H2 , (T) with 0 = r , 0 5 < 1 (H '2 (T) -

H2 (T) for = 0) and v is the bilinear function interpolating u at vertices

(xi,yi), 1 _ i _ 4, then

(3.9) 11 u-vilH (T) H 2,2 (T)

and

(3.10) 1u-vj2 :H Cu! 2 ,

H2(T) H p(T)

with C independent of u and T.

Proof. Let S - (0,1) x (0,1) with vertices (xii ), I i 4,

U H;22(S) with D = r V be the bilinear function interpolating

U at (xY), 1 :E i <_ 4. L can be oven analogously as for (3.6)
ath iti

that for some constant C independent of U
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(3.11) u2,2-ll 2,2 2'2  + I lU(xi,Yi) 2)-
H B  (SS) i=1

Let W he a linear function interpolating U at 3 vertices of S

other than the origin and be the bilinear function whicoh is equal to I

at the origin and vanishes at other vertices of S. Let Z = U - W, then V

= W + Z(0,0)p and

ffU-0f S 1U41 + I z(0,0)l 'U11I2
(H2,2(S) H '2 (S) H ,2(S)

by the imbedding theorem

:5 C f -W fH 2 (S Y

In the same way as in Lemma 3.5 we have

flu-wl 2,2  - I Cll 2,
whi(s) H s)

*which implies (3.9) and (3.10) by the standard scaling argument. L

a,
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4. PROPERTIES OF THE POLYNOMIAL APPROXIMATION

In this section we shall analyze the approximation properties of the

polynomials on a square, rectangle and parallelogram.

Lemma 4.1. Let S = (-1,1) x (-1,1) be square domain and

u) =,J 0 C. .p(xl)p (x2), where pi(x (resp. p (x )) are Legendre
i'j=O It]. i 1 j 2 pixi 1j 2

polynomials on I = (-1,1) (resp. I = (-1,1)). Then

(4.1) Dcu2 2(1-x2) 1i(1 2 ) 2Z c 2 2 1i____ !_(_2)
S X2) i,j 2i+l 2j+l (i-a,)!(j- 2)!fS i>CI  L

2

provided that the left or right hand side is finite.

Proof. Using the basic properties of Legendre polynomials we get for m = 1,2

2i+i (i-c)! for " -i,j i = j

rl (a) (a) a m

L (Xm)Pi m • (l-x m

0 for a > i,j or i A j

and the lemma easily follows.

Lemma 4.2. If u E H.+(S), k = max(kl,k2), kl,k 2  2, then there exists a

polynomial 2(XlX2) = d xixj  such that for 0 5 m 5 2
0-i-k

I1

O-J<-k2

[p

[



17

(kl-s l)! 2 S~+

(4.2) IfDm(u_,) 2  C{. (k1 l
-  1 2 u 2

H0( (k +s +2-2m)! s 5+1 ~ 0(H ~ ~ ~ ~ S~ (S 1O oa xZH(S)
0 x1  ax2

(k-s) 2 s

+ 222 a S1+s 20
(k2+s2+2-2 £'0 axz ax 2  H (S)

1 2

where s. is any inLeger, i n s. < k., (i = 1,2), and C is independent of

ki. Moreover

(4.3) u = 4 at the vertices of S.

Proof. Let pi(x) and p (x2) be the same as in the previous lemma.

5
Since u E H (S) we have the following Fourier expansion:

iO
u u 2 2  X = c ci,jPi (x )P (x 2),

.1 2

." u 2 (x aip(x1)

1 X2 i=O

u 2 (-lx 2) b p (x2)
x, X 2  J= i 2

u12(1,-1) diP.(x 2) ,

["u 2(-l,x 2 )  1 e ep(x 2).

x 2  j--O

Set

IL
eq 3q
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x (Xl'X 2) = . P (x)p(x2)
0-i< -2 iJilJ

O _jk 2- 2

x

x (x ap( x()
2 1 0<Oij5k 1-2 111 21X

2
x 3 ( x- 2 aj i 2 b i (xl2) , ' 32 (Xl 2 J - x 3 2 )d E 2 + u 1 x2

O-i-kl-2 ( 1

X (x 2 e 2 (x 2), ( 2) - x 3 (E2)d 2 + u ,-i)

x4 (X1) = diPi(X), 34(Xl) = I x( 1X)d + u (-1,-i),
Oi.k -2 1 4 1 1 1

rr 2

52 J- 24 5 2 Jd 1 5 ~)~ ~(1-)

)x2

(45x) =Olj<k-2 xjp(E2)E +5(xQ)d I-I ( 2 d 2 + 2-,-l).+(,~ 1x)

Let

qS(x) = ¢i+ 2

where

X2 x2 -1 31 2 2 J

( 4)= d rIf + (+x2)_i x 2 ( )d

+ We 4 (r )dt

¢2= (+l)f.-i k3( 2)d2 + j -  
5

(
2

)d 2 +u(-l,-l) + (l+x I ) (l+x 2 )u= X -lX2 )

Thle degrees of i (i =1,2) in xI and x2 are at most k1 and k

* respectively. We can readily verify that
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~ x X

c I ,X2)r rj2 r 2 (-11C d

u (i + (1 x) u 2 2CE)d, 'E (dld2d l,2)~ + fuxl 1, 2)dx 2  2u-,1
1 Z1

-(i+x )(i+X2 )u (1-)

Let

u u1 +u2

with

x x

(4.6) u 1  1 fl 2 1 f O~ 12 +~ 1 - (C P . )p ) d , E_J _1  1 -1 (:ik -2 + ~ -1 13 p 1~ )p 2
.J.I

05j:!k 2 -2 J1>--

r' x 1rx1

+ (1+x") J u (Q1 9-1)d 1 +J ux(E1 ,-)d~l,

x ~
(4.7) 12 = X c.j c. /p d- rI

2~ f- f 1 -1 Qni25k 1-2 ~lJi.I

j !k2-

2 xx
12

u-9xU 2-cbx+2 2 2

u ' 1  21  x 1 3 I2 2

wege

u u+
1

*~ F~ +~** F +UU**... F u FU+....

,.*UU~~~ 2 3 'UU* ~ * 2 4. 6 '.- .. - U~ - ~ U*U U . UU* .
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F1  1 rK jr 2 
1

1lr 2  
.. '

f 1 -1J~l -1 I

1-
j~k

k2 -

rx2 f~1
F 2 1x2 J1 - - 11aF dl

1

F (~±1X jjp w~Zd
5 1 J 1 'f-1 jlkl -1 4- 2 2

x E

F3 = J. f~~ ~

x

F 6 f 2 ( 2 e~ , id,26 J 1 J-1  j~k 2-_1

*It can be seen that

1 r 2  r2 c. p (x )p 2)Z2d2=J-1 J- 1 -k- j 1 1 i*~d

1 (P+(x 2>P.(x,) P.(x 9-p1 (x))

i~k L-1 12~)2J32-
1

05j <C

and
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2 !5_ 2 2
2:If- OI o - C c (2+ 2+1)

ax1 H(S )  ik-1 (2j+1 ) 4

jo

(k-s) 2 2 2 (i+s1 -1)!

C(k I s i>s_1 ii 2i+1 2j+1 (i-(s -1))!

j _o

by Lemma 4.1

(k -sl) s 1l+3
(kl+s -2)! II s +1 210

1 1 ax 1 ax2 H(S)

1 2

In the same way we have with C independent of k

(k-s P s+3
(4.- I 1 1 I a 1 2

(kl+S +2-2m)! s+1 0 m 0 2
H (S) 1 1 a 2 H (S)

and

s _+3

(k 2 2 )! 2 2
(4.9) (DmF 2 C 2 +2_2m) , 0 _ 2.

H0(S) (k2+S . ax2axS
2 +  H0 (S)

Next we estimate F Since

2F

2= ( aipi(xl))(l+x2 )

ax I  
i>k -i

1 ~1

,2 _C 22 (k-S)! (+ll

a x2 2 a 2 2 C 2k +S 1 a 2 (i+s -1)!

7-2 0(1 C I I 2i+1 (k +s -2)! i i1Li(
axH1 isl-1 i 2+ (i-(s -2))!

1(k -S )1  P Is + 2au

(kl+s -2)! 1 0

axl 1 X 2 H I
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I.

we obtain

2 (k) s 1+2a 2 2  1 (k1l-2) s +1

ax1 H (S) (k 1+s 1-2) 1  ax2 H (S)

In a similar way we have

F 2 2  (k-S)! S+2
DF 2 C (k+s ! u+1 02i(s) 1+ ax ax 2 H ( S)

2 (k-S) ! s1+2

IF2112 0  -ii(l+l2, aI 10 .

H (S) (k+s 1+2) 1 l H (S)
(S) 1x 1  ax 2

a 2 F aF
It is obvious that 2 0 and Ia _1 C1JF211H 0  Therefore for"ax 2  an(xS)() CI 2I 0  .Terfr o

for 0 - m < 2

2 (k 1 -S) ! S+2

(4.10) IIDmF - C (kl+S +22m) ,2 H(S) 1 1 ax 1 ax 2

Analogously we have for 0 _f m < 2

(k-s)! s2+2
.DmF,) -IC (k1+s +2_2m) !  1 L s +i 0 0(4 .iO(S) 1 Xl1'X 22H S

(4.12) 2DmF 2 2 C (k 2-S1 u 2
QS (k+Sl+2_2m) ! 'S "~IH()

3 0(S):5 ( 1 + 2 axax2! s + H (S),
a12

s+1
11t~ - Ila u,12

(4.12) JID'F 0 0 C(k +2-2m)l s

H-a 2 1 3x 2

S.. . . . . . .
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Hence qsing (4.8). (4.10) and (.4.12) we get

(4.14)
(k-S I  ! 2 s 1+1+z

IDm(u1 < CO u11 21 , 0 1 m02IIDmU-$1) f0 S) (k +sl+2-2m)! 1 11s+l H0(S) -r <

H(S) (k+X22) =O ,1 Z H (3)O .= x a)x 2

and by (4.9), (4.11) and (4.13)

*" (4.15)
(k2-s) ! 2 a 2 u 2 m 2

!I~(f~)IC o 0 22 m 2.i+J
2< 2C (k2+s2+2-2m)! 1 s +-l+ 20 ,0_ _ .

H(S) 2 2 =0 1 H (S)

(4.14) and (4.15) yield (4.2). From the orthogonality of Legendre polynomials

F1(-l,x 2  = F 4 (X,1±1) = F 2 (+l,x 2 F5 (xl,l) = F3 (±) = F6 (±l) = 0

which implies (4.3).

By the scaling argument we obtain immediately the following lemma

Lemma 4.3. Let Q = (a,b) x (c,d) with h, = (b-a) and h2 = (d-c).

u E Hk+3(2), k max(kl,k2),klpk 2 _ 2, then there is a polynomial* ~IfuE (p) kma k kk

OW I- k ijXlX2 such that for any integers 1 s.! k., i 1,2, and
O~i5k 1i~1 2i i1

0<m<2

(4.16)
s! 2( +1 s+l+ 0

-2m (k1-S1) 1 1 =2 1 2 h 2 2Z
• --0A~ll 9x2 L (

(k -s )! h 2(s2 +1) 2 s2,+l+ (h

+ (k 2 +s +2-m)! (02 a  2+1 0 2

2 2.......... . . ... ..... 0 . - a. . . .- ....... .'* * k , 2 H o
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where h -min(hl,h 2) and C is independent of k. Moreover

(4.17) u - at the vertices of 0. 0

Theorem 4.1. Let Q = (a,b) x (c,d) cc Q with h =(b-a) < r and1 1 10

h 2 = (d-c) X 2r0 , Xi 
- 0, i = 1,2) and r0 be the distance between

.* origin and i Assume that h/h max(hl,h2 )/min(hl,h2) 5 K. If

k+3,28
u 1E H () with (D r 0 < < 1, then there exists a polynomial

8i I

0<i C x2 on Q with 2 :- k1, k2 !: k such that for 0 5 m :E 2

m 2 2 r(k.-s.+l) x. 2s.
(4.18) I(D (u-0)0l) Cr 2 ( 2 m-) J r(k +s +3-2m) (2) J u s.+3,20j--1 J J H (a)

8
'.. S .+3,2

where s is any real number i:5 s. - k., j = 1,2, and Hs 3  (n) is~S
k.+2,2 k.+3,2

the interpolation space (H + (Q), HkJ  (2)) for some integer

k. = s. + 1 - e. _ k., 0 _< e < 1 and C is independent of k, but
J 3 3 1

dependent on X. and s., j = 1,2. Moreover

(4.19) u = ¢ at the vertices of S1

1"

Proof. Applying Lemma 4.3, by (4.14) and (4.15) we have for the integer kj,

1 _ k. ! kj, j = 1,2

.. .. .. .. ..... ..........

..................



25

IDm(Ul )112 Ch -2m (kI-k1)! h1 2(ki+1) 2 h2.2ZD 0 0 1 11 ,u+jU 120 (2)22H (Q (k 1+k1+2-2m)! = H (M.)

1I  x2

(k-is)2k
C_ Cr ( 2 - m- $)  H 2_, ! ( _I

0 1ullk +3,2(kl+ 1+2-2m)! H

and similarly

m2 <Cr
2 ( 2 -m-8) (k2-k2)! () 2 2

<- (-) II ul 2+3,2
222

H (i)(k2 k +-2)!H8 2 n

Let

T ju = Dm(uj-0), ij = 1,2.

iC. +3,2

Thus T. is an operator: H 3 (Q) - Hme(m) and the norm of the operator

is bounded

(k -kj. 2k

IT .1 2, < C2(2-m-$) I 2k"

s .+3, 2

If s. = - 1 + 0., 0 < e. < 1, Hs3 (2) is defined as interpolation
JJJ

space [10]

s 3,2 k.+2,2 k.+3,3

H J ( ) = ( H j ( ) , H I ,c o

s .+3,2
T. is also linear and continuous operator: H J (S) + Hm( ) and

< T2(1-0) 2IT ,2+

r+ 2s +3,2 -jITJ,1 kj+2,2 j 2

H (2),H( I) H (),Hm()),Hm(

2s 1-e:EC 2(2-m-$) j (k. -, -k ) (k j-k+l) I -

0 (k +k1 +2-2m)! (k +k +2-2m)

<i
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For any integer n~ 0 and 0 < 6<1, there are constants C1, C 2 > 0p independent of n such that [18, p.937]

(4.20) C r %n+1+6) n! (n+l) < C r (n+li-) .
12

Hence we have for j =1,2

("T)2Hm( 21) 2(2-m-6) (4) Cr 3~.s.1

s +3,2 - 0 r(k .+S .+3-2Li)

V and

I~(~)j2 2(2-rn- 2 (k- +1) s. 2

0 Cr r(k +s +3-2m) 2 ~ s.u3l

(4.19) follows now from (4.17). 1

Let ~2 be a parallelogram with interior angle w, 0 < w < an tw2an tw

sides a and b (see Fig. 4.1). We introduce the mapping

y V

b si bi

Fig. 4.1

Parallelogram
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• x1 = x1-x2 cot W

x2 = x2/sinw

* and have analogous lemma and theorem for a parallelogram domain.

Lemma 4.4. Let 0 be a parallelogram shown in Fig. 4.1. If

k+3u EH (Q), k = max(k,k2), klk >2, then there exists a polynomial
1. 2 1 2

(Xlx 2 ) = X X2  such that for 0 _ m :E 20<i-<k I

0:<_j<k 2

(4.21) IIDm(u-V)JI 0,

H (Q)

-2m (kl-S) ! a 2(s1+l) 2 z 2 b2Z<SC(min(ab))-2 11(k +s +2-2m) 2 1u S i+i+1 , -2' H (Q)
Z =0 Z '=0 x 1 x)11 x2

(k-s)! 2(s2+1) 2 s2+1
+l 222I2 a 2Z

(k 2+s 2+2-2m)! b V ZiYu  2 H 02M)x x2 H( )

where Xl-(xl-x2 cos W), X2 =x 2. s. is integer -<ki, i = 1,2 and C is

independent of k. Moreover

(4.22) u = at the vertices of Q . 0

Theorem 4.2. Let Qi be parallelogram cCQ with interior angle w,

0 < W < M, and let a and b denote the lengths of its two sides,

a _ Xlr0  and b - X2r where r0  is the distance between Q and the
k+3,2 ()wt

origin where the vertex of Q is located. If u EH k (Q) with

then there exists a polynomial = ,c Xj ,

2 < k ,k2 < k such that Oj_:k2
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2 2 r(k -s.+l) A. 2s
(4.23) IDm(u-,O)2 -0 Cr2 0(2-m=) r(ks 2) HIs +3,2

H (U2) H ~~s+32)

where s. is any real number 1 !E s. - k. (j 1,2), C is some constant
3 3 3 +3,2

independent of k but dependent of angle , H1  ( Q) is the interpolation

k.+2,2 k.+3,2

space (H J (Q), H I (Q)) 0 G 6 1, for integer k. _ k. such

that s. k. - 1 + e. Moreover
3 3

-(4.24) u = at the vertices of i"1

i

" . • . . . . . • • . . . . -... -o
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5. APPROXIMATION PROPERTIES OF PIECEWISE POLYNOMICAL ON A SQUARE

AND A PARALLELOGRAM

2

Let £Q be a square or a parallelogram and u f B 2d(Q) with the singularites

in the vertices of the domain. We shall show that h-p version leads to

an exponential rate of convergence if the mesh and the distribution of

the degree are properly chosen..

Let us investigate the approximation of the function u E B2
$, d

where £ - (0,1) x (0,1) and 0 = r . Let a mesh on £ be as follows:

let xo yO = 0, and x. = y. = n ' !, i _ j _ n + 1 for 0 < a < 1 and
0~ J.

2l-j ( ( 1 i,) X (Y,yj) for 1 5 j _< n + 1

S122,j (X (x11,x X (OIY....) for 2!5 1 n +l1

3Z,j (j-lXj

f3, j =(O,-Xj-l) x (Yj-lYj) for 2: -< f <n+ i.

The nodal points which are marked * in the Fig. 5.1 are classified as irregular

nodal points and the others as regular nodal points. The rectangulation

{£2i, i 1i for J = 1, 1 _< i _ 3 for 1 j !- n + 1} is denoted by Q*n

If we divide £2 for i i 2, J > 2 into three triangles Qi j

1< k < 3 as shown in Fig. 5.1 we get a mesh on n: {0i,J- for i - 1,

1 .j n + 1, 2 s i s 3, j - 2, Qc for 1 _ k _ 3, 2 < i _ 3, 2 < j < n + i}.

We denote this mesh by £2n and call it a geometric mesh.G

r"%
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nl 3 14  fl 1, 4  n 1, 4

n3 2

- fl 2 ,, 4
3,2 1,2

1,3 

2,2

- Figure 5•!1

Geometric Mesh on a Square

I Let sP'Q'1 ( O) C HI( ) be subspace of functions which restricted to

i i~~j' i < k _< 3., 2 < i i 3, 2 <j <_ n + 1. (resp. Q.~j i. = i, I <_ j < n +41, or
kk

Q<.i_ 3, j = 2) are polynomials of degree 1 (resp. P ) in x and

< fdge k . (resp. q.i. in y. By P and Q we denote the degree

.. vectors P= (Pi~j) = (Pl,l,Pl, 2,p 2,2 ,••,P3,n4 l) ad =(qi~j) =

I, 3

I qll,q,2, ,. • 92,2 2',

_iLemma 5.1. Assume that 2 = (0,1) X (1,0), u E B ,d(Q) and ¢8= r . Then

Gemti ,qs~ln akqur

there exists (x,y) k s:3( ., 0 < < i, P1,1 qn = l, Pip n 2,
* 

k

q = q.i - 2, i k - 3, j 2, and p1 ,2' q1 . are non-decreasing with

such that

, ~

oqQ

ji

vecor P

d B

•)k:-.-.er exi sts- -( 0.. . < .-, <,- ,," .."-. .."-. =" .. 1"---" .-" . "-" . . -"." .- -" . , ,,"- .. .-"''-"."-'-" 'v ," .
" D m , e -"

• 
""

•
"""e 'o°e e " , " " ," i " , ' ' ' 

"  
' ° 

° 
"o

" .  
," ' ' . " ," , " .;, ,k" ' • "

_' :: " ;'"' q ",". "2'"'","-." 1 "'.' k 3, j 2, an i' 'i q,j a're no-decreasing "with, j I
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(.5.1) 11U41l2 l(Q) :5 C~h 2 (1-) I ; .2
H 1,1 UH 2 (i

(P X ~2s j
+ ~ ~ ~ ~ 2(-a l-i 'i Iul 2 S~+,

1 -< i < 3 , i ~s2 (nl - _ _1_ _ _ _ _ _ _ __j 2

xC 2) (1h l-ii Ld Iull 2*.3,
J-1 (q i.+til.- 2 )! (2H 3 , Q2 *

a 1,3

where =is bilinear interpolation of u at vertices of26.1

s1and t i' are real numbers, 15 s 1 j 5p~j :! ti.. :5q=,

= 1, )(j~ ) 2, '3,j/~ 2 ,j X 3, 1 for 2 !i 1 n + 1. and

-p "j =i~ r~,, - + 1), etc.

Proof. Applying Theorem 4.1 on each Qj 1 < i < 3, 2 < j n + 1, there

exists a polynomial k.' with degree p..' in x and q .. in y such that

for 0Of-m 2

*(5.2) I~~-,jl

2s

C x/(- -) (i j si l ! l j ' ll 2
5 C {(+s+22m! 2Hu s i +3,2

(q 2tH"

+ l-il Vj h" luI +3
+ -, i +ti .+2-2in)! 2 H $ ' +3 2 C i
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On the regular nodal point of ,n the polynomial (i j(x,y) coincides

with u(x,y), We need to adjust *i,j on Si,j for the coincidence

on the irregular nodal point.

We show the treatment on 22, (j >2). We denote 02,j (x'y) on

k k k
2,j by (2, (x,y)o, 1 : k 5 3, and let v2 ,.be linear function on

.2 such that

k k
v 2,j (xj l 'y j _2 ) u(xj lyj_2) - , (xj-2'Yj-2)'

k 0 on the other two vertices ofv 2,j  e of 2 j

*- Then setting

k k k (xj-Ityj.) (x y 1 ,)
*2,j = 2,J + V2,j'

k 2
on i k 3j 3 2,J

we have 
a2J

u k on all vertices of 
x 

k
2, 2,j'( - ,O (xj,O)

1 5 k _< 3. Figure 5.2

Partition of a Nondiagonal Element

Applying Lemma 3.5 we have for i :L 2, j > 2

I.
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(5.3) 1u1 1 k 2 J U k k 12 <C1 k 2
iJH 2 ukij-i H2 GQk -i,j H2 (Qk•~ (i~j ij

. k 2 2< Ch2 k 2
(1u2. J .) iju ij H 2(Q )

(54 1~iJ[l,J)  iJu-i]2 jk.

Functions (i 1 1, or j < 2) and (i 2, j > 2) should be
ki )

further adjusted for the continuity on the common edge of two triangles or

." rectangles.

There are six basic cases for i = 2 shown in Fig. 5.3, and another

similar six cases for i = 3, which we have to treat.

,:.Case 1 (j>2) Case 2 (j>2) Case 3 (j>2)

~2,i ~ 2,

Case 4 (j>2 ) Case 5 (j>2) Case 6

Figure 5.3

Scheme of Adjacent Elements

We show the treatment of Case 2, Case 3 and Case 6. The other cases

1 are similar. In Case 3 j and 3, coincide with u at endpoints

of common side y of Qj and P,j. Let w = 2 .3

* .. *.V?"-*
-..
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I1 3
Since - 2,j= v2,j - v2,j is a linear function, w vanishes on y.

. Hence the piecewise polynomial is already continuous on 2 U Q
2 i2,j

2
(j > 2). In Case 2, the functions l,j-i and 2,j coincide with u at

2 -2
the vertices of l,j-1 and Q2,j' w = ( 1 ,j-- 1 4 2 ,), vanishes at the

endpoints of common side y of P - and 2 Bi1jl2,j"Basupinw sa

polynomial of degree q2 ,j in y. By Lemma 3.3 there exists a polynomial

w of degree q2,. in y and degree 1 in x such that for 0 5 y 5_-

* -' 2
w(xj-2,y ) = w(y), it vanishes on other sides of Q2 ,j, and

(5.5) iwl 1 (2 2 C 2 w 1(2

2 9

: C h ( 1( I ' ul u1 2 + 11 t j 1 u 1 2K

(2) - C 2j 1 i..)

H (Y) H (y)

* by Lemma 3.1

< c Ijh 2 '2,j ull2 + h 4 2
2 , -, H 2 (Q 2,) h,j n2,j- 1  'j-l H 2(QI

2 I 2 l'j-l2 +q I2 - i2
{h -H CN2,j 222

, UH22j2,j) h2 ,J-1 lj-i H2 ( Q2 j _ 1 )

Setting 2 ~2 ^ 2
= ,j- w in

2 i, i 2#,j -- in 2,j-

%-* * * ** - .%-. .... • . * .. . - - o -° -
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we have

2 2HI < !-2 112 2  2

(5.6 llu2-2,j 1  - 2{ ,j 2 + 1 (22,H 21 , H ,j

~ {I~u-P~jI~ + h2  I!~ 2 1111~ f u-.~j.!2
1 Q 2 + 2 ,l 2 H 2 (2j+1j1j1H2Q

2,j 2,j 2,j H2 (,j) H- u

by (5.3) and (5.4)

2 2 2 2 }_< C{h9 , u-2, 2 k +lj l-lj-llH2(lj)

2,j)1j-

and

(5.7) !l U-0 12 2 ) 2

In Case 6 (j = 2) ill is the bilinear interpolation of u at

vertices of Q2 . The common edge of Q and Q, is separated from
1,1- 1 ,1 2,2

the origin and w = 0 2,2-NI,i) vanishes at endpoint of y. By Lemma 3.3

there exists polynomial of degree 2 in y and degree 1 in x such that

wy = w and w vanishes on the other edge of Q2,2 and

y 12 22

- Ch
H( ) ,2 H (y)
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H 1 sI 2 2,2 HI (Y)

by Lema 3.1 and Lema 3.2

S Ch (h 2w-* 21122 .i-, 1112 )
2,2 2,2 2, H(22 ,. HB ,2 (I2

-. . 22 2I B -

:- C(h 2 11w-* 2 21 + hi122'2
H i, H' (S21 )

Letting

Si~ = 2- in

2,2 2,2 2,2,

1,1 1i,1 in

:. we have

(5.8) IlU- 2 2! u-0 2  212 1 + II 1 21

H "22,2 H ( 2,2 ) H 2 ,2)

2" + h H Ilu 1,1 2~- 1 l1 2 2
12 2 2( , (I- )uH1 ' (22,2-< CHu-S'2(,2 ) + 2'(u$'1'H(2,2) l l iH ii

and by Lemma 3.6

h
1  

lu- 2
(5.9) Hl- ,H 

2 M, ,
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After treating all the cases we obtain modified k, > 1, j > 2 and
pi~j

modified i,2 (i = 1,2). Define

on n for 1<k< 3, 2: i 3, 3 < j < n+l,. i~~j o j ...

ec,j on ,j for i=, 1 j !5n+2 and 1:5i5 3, j =2.

Hence si E s'Q'( n) and

2 2
(5.10) u- 2  (i- )

1 C h 11 1u- 1 , 2,2HI OR) H8 ( , 1)

+ (fu-,. .12  + h iu- 2 )}.
15i53,1<j5n+l ,j H (fi j) 12 (ij H(.)

(3.5), (5.2) and (5.10) yield (5.1) r

Theorem 5.1. Let S = (0,1) x (0,1) and an  be the geometric mesh on

shown in Fig. 5.1. If u C B ,d(Q) with 0 < < 1 and (D ra, then

for any 0 < a < 1 there exists a piecewise polynomial p (x,y) E aP, ,l (Qn
" k

with degree vectors P and q in which P = ,= i P PiJ = P

q = P for 15 k 5 3, i ! 5 3, 1 < j .5n+l, and p =max(2,[J]),

-zand p satisfying (5.15) such that
P2

(5.11) lu-ll Ce ./

H. (f2)

The constants C and b are independent of P, Q and the number N of

degrees of freedom of the space S-,

S . " .' . 4 < '4 : ' , : ' , -, , , ' ." . . ; . . " ' " , " .. - , . . . . . ., . , . , , . . . . . , , , .. . .
S . . ... " " " - " : ' ' : -- , _ , , _ ' . " . ' n ' , : ' ' ._ .. : ..... . ., . ... , . A : , , ., . . 2 ' . , '
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<n

Proof. Applying Lemma 5.1 there is f S s[' (I 2 ) satisfying

2 2l-)I(p 2s )!X.
H u-4 211  < j{ Xj 1  ~ -S .+sj .- ) l I is +3,2

H (62) l< j5n±1 p 1 , 2j H ij (ij
1 -1:5 3 i,|2 t
q" - ti + Z (1- )(n+l).

""+- rq'-t') ( J t i,j+3,2Pi)
( +t ,j-2) 2 H (,j)

Letting p max(l, -) we have using (2.3)

22s

Hi ~1 Z~ +xj - l (p +S -2) ! 1 ((i~j+)

+(q i,-ti~j Pt i 2ti j 2 a2(1-6(nl)
.. "+ (qi~~i -2)1 . 2 +"

Let s =j ip. =~ M' pj , t -~ jq,, Jqj0 I <~ J,,j 1 with ci ,aj

being determined later. Then

(5.12) 1u*i a l J- 1 j

" H(l-)l- 1 < dgi+.
+1 F(pd,c-)I .q 6 + a2 (1-6)(n+l)}

* where F(dl'a) = a -d--) Function F(.dl,,) is defined on 10,-) x rOli
2 (1+a) I+

and F(pd, p) < 1.

Hence

' (5.13) Fmin  min F(pd~a) F(pd,'%i n ) < F(pd, p) < 1, in- 2//4+2d2

S1[0,i]

Taking p] qj, (X j j max( - amin we. have by (5.12)

q.,.-
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i2

-(5.14) 2 1
H (2)

5 c(a 2 (n+I)(-) + x x2 (l- )F(Pd, -§I%
1<j<jo

"' + 2(i-4) Fnlj 6
+ x2( )F f~p 6

1+j <j_<n+l j1 Pf J

where p. =-.n ' 1,[a] means the integral part of a. We choose p.

max(2,[Jp]) for j _ 2 and

(5.15) > 2(1-B)Inar
In Fmi n

Since j. is bounded

1 2JO <-+
1i a Pmin

and

(5.16) 14, 121 : co 2(n+l) (l-s)

H()
P i 6 F (pd,p ) PF IPI min p. 6Pj

L 02 (1-j 0ax F 2(-B
2:5j<2.j 0 2J!-J 0  min J 0 +lsjs- n+ l

-2 (n+2) (1-

with C > 0 independent of n. Let 13 - max(!,). The number of degrees

of freedom N is

!' _,;"' " "" - ,' ."" '.'"" " ' ' *
. -', A.,"- -.. .".. * % ".'- *.-' , .' - . -'- . - " *. -. ," ," .-- --- -": '-
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2 n+l 2 7 2 13N 3 + 3(-1-+1) 2 + 7j 1 qj+l) 2  (n+2+:_-) 3

j=3

Hence

i -2 (1- )lrr 3/3 N1/

2 a -2
.-L~ ~ IIu IH < Ce 7 "

which yields (5.11) with b = (1-a)(L)l/3in I and C independent of N. 0

" Remark 1. In practice p. and q. are often selected uniformly, pj

qj = p = [k(n+l)] for some 11 > 0. Then (5.11) holds and (5.15) is not

- needed. From (5.16)'-we see that for p p

2 2 (n+ 2) (1--) IPp6 1 2(1-e j}

(5.17) 11u-l 1 (0) C {+IF j I P
H (~)1< j:En+

C{ 2(n+2) + IF p p6

2 1 1

-< CC 7q + IFm i1 7  &)N 2

1

-2 1

2U(1- ) 3 1( 3 1wih _ min ln, 1Fi[(1

.3with b n 31B m-n() In in 1 ) and C independent of N. In

(5.17) the first term is the error on the element containing singularity,

the second is the error on the rest of the elements.

.

0,
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Let us discuss-now the optimal choice of p. First we drop the

term p6  in (5.17) since IFmilp 6 iCFn for some 0 < F < Fmin < 1,
3 - 1/3

and replace nd and 1/ by N and v respectively. Consider the

function g(v) - g1 (v) + g2 (v), gl(v) 
2 2(I-)N 0 v and g2 (V) FN

with 0 < F, a <1. It can be readily seen that g1 (V) and g2 W)are

increasing, respectively decreasing functions on [0,-o), and gl(I) = g2 (V)
1/3

for v V =02(l-)ln a with v0  independent of NO. g!(V) and
for vv00nF

g'(V) intersect each other at least once and three times at most, (see Fig.

5.4). Therefore there are Vi, 1= 1,2,3 (resp. i = 1,2 and i 1)

such that

2 2 (l-)N 0 vi-2
2 4 (i- ) in a

(5.18) V. N V
1 0 iF ln F

since g'(vo) > 0 g'(0) < 0, and v1  < V0 .

Y, YO Y0 0 IV Y*

Figure 5.4

Determination of the Optimal Value of v

Now we can speak of the optimal value : - v (resp. v 3) in the sense

of minimizing g(v) at N (resp. v) The optimal value of '4 depends

* on a ,F, and N.

• ~ .. ...- . . .. ; '.. -.'.. 4 -. . .- - ...... .. -. . °.-. . . -. . . . .' .".- . . .. ' . .
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For the asymptotic analysis we write

2(IB)N0 2 in F NO
In Fg(o) = +c •

In F NO

If 0 < V < V0, g(v) z 0" for large NO, which is decreasing with v.

2 (1-)NV
- 2

If V > v 0 5 g(v) z , which increases with v. Hence V 0 is

the asymptotic value of the optimal V. For large N equation (5.18)

has only one solution, v1  and v 3 will approach to V 0  from left and

" right respectively.

Remark 2. amn and Fmin are the function of dI  pd, and Fmin =

F(dli n (dl))•
mn 1

We see that

SF (d) =(F + (d) F) > 0,min 1 d mmn 1 a c~
1 min

. and F is increasing function of dI . If 0 and d small, we can

choose small Vj; hence we can reduce the number of degrees of freedom of

P -,_q'l(,).) The value d is related to the function u(x,y) and P is

.- related to the mesh.

* Remark 3. The mesh *n with the irregular points can be used analogously.
a

r. The results are then quite the same as for the trianetular mesh we. analyzed

above.

Remark 4. The technique we used for the adjustment of two adjacent elements

can be directly applied to satisfy homogeneous (or polynomial) boundary condition.
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So far the singularity of the solution occured in one vertex only.

The general case can be easily treated.

Let u f B2 (0) with 0 = 0 < 1, 1 < i < 4 and

_ - (0,2) x (0,2). Divide Q into four subdomains mQ, 1 < m _ 4 such

that on each m2 the function u has only one singular point, and apply

Theorem 5.1 on "'T2 1 < m < 4. Let 2n be the union of the geometricMn

mehe n on = 1,2,3P,4 P)ad1 234
mehe a on mq , I <n m _< 4. Let P ffi -ip3,p ... and I ff Q, ,,q)

be the union of Mp and m2, 1 f_ m !: 4, each raP and ma be defined as

nh
before. Thus for the mesh Qn and degree vectors P and _Q (see Fig. 5.5)

we have

n
Theorem 5.2. Let Q = (0,2) x (0,2), 2n P, _ be defined as above.

If uEB2  (Q) with B = ( Ia 2 ,S 3 ,B 4 ), 0 < a < 1, 1 :5 i _5 4, then for
,d

any 0 < a < , there exists a piecewise polynomial p (x,y) E a-'l(n

such that

_l/3
2~t~! _< Ce

1 3 11/3
with constant C independent of N and b = 2(l-6)ln - where

* lmax , 1.1 max(l,.) and p satisfies (5.15).

We shall now briefly address the geometric mesh on a parallelogram

domain Q, which is the image of geometric mesh on square under a linear

mapping. Let M be a mapping of standard square S f (0,i) x (0,1) onto 2:

.

I, - - .- ;,,' , ,.\. : . . .-. .:. .,.,-.,... .'...-.-.-.-.-., .. .. ;,. :-.-...£..: ...- ... .
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Y

U=0.5

n =3

Figure 5.5

Geometric Mesh on a Square
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(5.18) x = a + bn cos w

y =bn sin w

with Jacobian = a b sin w. The inverse of M is given by

(5.19) y = = (x - y cot w)/a

= 2(x,y) = y sin w/b

where w is the interior angle of n and a, b are the lengths of the

sides of n shown in Fig. 5.6. Let n - M(S n), where Sn is the

geometric mesh of square S (see Fig. 5.2).

Let S: ' be the subspace of continuoug and piecewise polynomials

-(x,y) C H 1M) such that

C m for 1 :5 k :5 3, 2 1 i < 3, 2 j n + 1,
nk k. 

.. .

i, J 0:5z:p i, j Of<qki

and

z£ml2 for i = 1,1 j _ n + 1 and i = 2, 3,
i j 0<:-Pi,j' 0 '<q i,j j = 2.

The number of degrees of freedom of SPQ'Il(Sn) is defined as the number

- . . - - - - - .. . . . . . . - -......- . . - .- -. . -.. .N



46

of degrees of freedom of Sj- .- C2n and denoted by N. We have the

following theorem

Theorem 5.3. Let 2 be a parallelogram shown in Fig. 5.6 with interior

angle W, 0 < W < -. Then f or any u f B d(R) with (D r~ 0 < a < 1,

and 0 < ca <4, there exists 4'Oc,y) E S: with the degree vector P

and _Q in which p1 q. = 1, p k qk =max(2,[juiI),
il = ~ q. i~ q1j ,i

j 2 and pi satisfying (5.15), with a replaced by a = d/2 max(a~b)I

min(a,b) such that

ii-bl2 1 e-bN 1 /
3

H G

with b 2(1-6) 3(3r in max(l,i) and constant C independent of N. QI

obsin w

3 203 4o 3,4aa

aFiur 5.6

GeomtricMeshon Parllelgra

* ~ ~ ~ ~ ~ 3, n214~-..... ***'-.. ..
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6. GENERALIZED GEOMETRIC MESH AND ITS APPROXIMATION PROPERTIES

In this chapter the generalized geometric mesh with triangular and quadri-

lateral, curvilinear triangular and curvilinear quadrilateral elements will

be employed on polygonal domain 9 contained in the unit disk centered at

the origin which coincides with one of the vertices of £2. We need to

redefine mesh £n and space SP'Q'(Q n
a' ca

Let Qn {Q i'. j = ,2,...,n+l, i = l,2,...,I(j)} be a partition of

Q2 satisfying the following conditions:

1) 9 .'s are quadrilateral or triangles (curvilinear quadrilaterals

* or triangles). The intersection of any two Qi 's is one common vertex, or
i'j

one entire common side or is empty;

2) Let hi~ and h. . be the maximum length and the minimum length

- of sides of Q. and for all i,j there is a constant X such that

(6 .1 ) h . /h i < ;
> 1,j - ,j -

3) Let M-- (Mij, If i_ n (j), !E j :5 n + 1) in which Mi' j  is a

one-to-one mapping of standard square S = (0,1) x (0,1) (resp. standard

' triangle T = {(En) 10 < -1 < 1 - , 0 < E < 1} onto Q If P% and

• denote the vertices and sides of P. then M I (P ) and M i (Y )

* are the vertices and sides of S, 1 5 k 5 4. Moreover, if M. and

mM map standard square onto two elements n. and £2 with common
" mk lZk

side A A then for any A E y, dist(M (A), M. (A) dist k)
1" 2 i 'j j( ) = (m A),

. Mmk(A )), 1 f X 2. It is assumed that the mapping can be written in the

"- form

(6.2) on S(resp. T)

%'"Y - i'j ( E ' Tl )* :.

'*. 'K**....*..k. *-.*..................
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with X and Yijbeing smooth functions on S,

(6.3) IDn'xID'yI :E Ch~ Icti ja . 2

and

(6.4) C h2 *J. < Ch 2

l-ij ij -2 i,j

where J. is the Jacobian and the constants C, C 1and C 2are independent
q1

of i,j.

The mesh Q n (0 <ar <1) is called the geometric mesh if in addition the
ar

following condition is satisfied:

4) If d. denote the distance between the origin and then

n+2- ~ -
(6.5) a 2j d.. anl 1 < j :E n+l, 1 1 iE I Q()

(6.6) d =0, 1_i < 1(j),i'l

(6.7) K 1d :!Eh !Eh <~ 5K 2d i for 1 QIj) 1< j nn+1 ,

n+l n*(6.8) Kc <h < h 5 for 15 i -.I(l)3 -i,1 i,1 4

* where Ki, 1 i 4 are the positive constants independent of i and J.

Let P = (p .., I ni I(j), 1:Ej :n+l) and Q=(qi'., l ifi(j),

1 fij f-n+1) be the degree vectors with integers pij qi,' 0.

We define the subspace S~(?n as in [91

aA
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sPQ--(2n) {010(xy) i(M (xy)) for x E Q. .
1,3 1,3 1,3 1,3

is the polynomial of degree p i.j in and of degree

-<qij in n on S}

and PQ- (Q -QP, n OP Q1 P, land S-'n' a PQ_ n H(), ,,I ) = s,, ,Q OI( )

where H() = {u I u E Hl(),u[n = 01.

Remark 1. Denoting U = u(M.,.( ,f)), (6.3) implies that for jIa = 1

(6.9) IDauI _< Ch 1 ([LU I + [U 1) on S,
1,j n 1

and for [a[ = 2

(6.10) IDaul Ch-2j (IU I + IuLI + Iu I + 1%!I + IU,).

Remark 2. If Q is a triangle,(6.3) and (6.4) are equivalent to the well

.* known angle condition:

* (6.11) 0 < - < - w < 1 for all interior angles w's of Q.

Remark 3. The geometric mesh n was designed for the approximation of the

" functions u E Ba, (), a - r . in an obvious way the mesh can be designed

for the approximation of functions u E B 2 (Q), =. T ri

*i Lemma 6.1. Let Q be a curvilinear quadrilateral (resp. triangle), h be

-; the length of the longest arc, and let M be a one-to-one mapping of standard

" square S (0,1) x (0,1) (resp. standard triangle TG{(EC)5 _r, 0< <i})

"- onto P6 given by

o. . . .. . . . . ° . . • . °- ° - .*°.- ° . . - * °- .*. '. 2,- - - . ° -o
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(6.12) on S (resp. T)

Assume that for any a, jaI i

(6.13) D ID'I < AI'Ih.

Then for U( ,r) =u((,), ,)) and ja - k

k k
0 D (3A) max {IIDV'u! 0 I (-)!

H (S)(resp. H (T)) Z=1 = H (SI)(6.14) J(g-i) !

where p is the multi-index (p "

Proof. Let us first show that for J = k > 1

k

(6.15) DIU (D u)p 
(k )

£1 UEs~

• where S' is a set of pairs p = (,p ) Up 0 integral, 1+ Ppk

* such that

,1
s = (1,0) U (0,1)

k+l k k
. (6.16) Sk  = {(ppq )(P p-l,'p q) E S , ( i ,p-1) E S

p-kp ( pq

S consists of pairs which are in general repeating. For example

S2 {(2,0), (1,1), (i,i), (0,2)}

S 3 {(3,0), (2,1), (2,1), (1,2), (2,1), (1,2), (1,2), (0,3)}.

The values (Pi ,q ) are the numerical values of the a pair 1 and the
P q

different pairs can have the same numerical value. Further we will

4-i
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denote h-i = Ip + 1.
lp q

(k)
The functions p.. depend on the pair pj (not only its numerical

value). For example for Z = 2, a =(1,1) we have in (6.15)

ji (2)
-2 (D1u)p P u x +uX u ddT UY~r

IIES

and hence the function p associated to the two different pairs with
11,ta

*- the same numerical values (1,1) are different. In (6.15) the general form of

P (k) is

(k) v s2 K
.6.17) p0- 1-_ a(,Vj,,Kj,a) TT D TT D1 S2

-?,a v. s2=lj K--1
lVjl+lKjl =k

0
with a(p , c j,) = 0 or 1. (We used in (6.17) the notation "T= 1).

-1
(6.15) can be readily proven by induction. Let D(k,Z).k > k be the

" number of (additional) terms in (6.17). It is immediate that

(6.18) 1(k,k) - 1

*. and

(6.19) ¢D(k+1,9) = 9.(k,k) + 2¢(k,k-l)

and (6.18) (6..19) gives

3k k-P.
".i~( (k, Z) - 3k - .

Hence coming back to (6.17) we get by (6.13)

- I -i ]0 (k)j _< (P(k, [U] )h WIA k

P'



52

[[ and hence

k

IlDaUH0 -0 (3A) k  k max {IIDNUIl H0  )hz k-)

kkkIDI k }h0 (k-l)'
(3A) L max {I"D U h1 amr1 lui = H ( £ -) .

2 =r

Theorem 6.1. Let u E B d(2) with 0 r 0 < a < 1, and Q be a

polygonal domain contained in a unit disc and with a vertex at the origin.

nLet 0 i,
Le i ={ , 1:i5 -I(j), -j -n+l} be a curvilinear quadrilateral

geometric mesh satisfying conditions 1)-4). Assume that mapping Mi'j  of

S = (0,1) x (0,1) onto 0ij

ij"" - i~ x =¢i (,)
- (6.20) in S

Y = iTI( ' )

is such that

(6.21)

;. I Aj, I - Ah for any a = k>-l, 1:-i-5I(j), lj-<n+l
1,j 1,.j i'j

where A is independentof i, j, and k. Then there exists a function

'(x,y) E sP'Q'1(2n) with degree vectors P and Q in which Pi = q. =
a -_inwihpi'j =i~j

. p. = max(2,[j]), j a 2, and with p satisfying (5.15), Pil f qi

- such that

- (6 .2 2 ) IC- I 1 /C

H (Q2)

.. with C and b independent of N.

.N N

* *%
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Proof. For each (ij), U i,j(E,1) U( i, p (E,1)) is defined

on S = (0,1) x (0,1) and by (6.21) and Lemma 6.1 the inequality (6.14) holds.

Applying Lemma 4.3 there is a polynomial i,j (E,n) of degree p. in E and

nj such that for the integer t., 1 _< t. < p. and 0 5 m 5 2, j > 2, J -: J- _

(p -t j) 2(t +l) tj+l+k 2k

H~Uio (S) i k=0 k H (S)

t.+l+k

+ J Ul 2  ( 12k
a kat]+1 H 0(S)

by (6.14)

(p.-t.)! 2(t.+l) t.+3 (t.+2)2
C -I 3 A h ~ 2Z. 1 *) 211DZ ul

- (pj+tj+2-2m)! (2 L i,j((-i)! 0

i,j

by (6.7) and because dij < I

(p2t )!t. 2(t+ t+3 (t.+2)13 i T)2(2-B) 1 2 2), 2
- C( i,j 2, ((-l) ! d2 lull ,2

Z 2 H' (Q)

Letting i,j (x,y) -- ~j (M (x,y)) for j _ 2, we have by the scaling

argument

JjDm(u- i ll 20( . .

ii H 0c? 
*)j

C(p J-t )!tI 3A 2tJ 2(2-m-) t+3 (t +2)!) 2

(p +t +2-2m) !2 ij 1 2 H__(_ )ull2

P,, 2 H )

Let H (Q) (k =2) be the weighted Sobolev space with norm

. ..~ ~ ~ ~ ~~. .~ ,. *.. .p .. _ , _ , r + , +++., .• ., , . + + , . . + , + + + +.
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,2I= 2 2(k- 1)! 2 l U1 2lll^k92 2) ((. )!H, 2 )
H () Z=2 2  (-l)! u 2 .

Since u E B 2(M) then for k 2~ d

ll k,2 -C - (k-l)!
H ( )

Ak+31#2( m owith = max(l,K 2d). Let T be the operator Hk Q,j

1 l! k pi , 0 :- m _ 2, Tu - u - ij then

(p.-k) 3A 2k 2(2m)/2
Mk = JJTp- k 3 . ) d , -

14k+3,2 ()Hm( ) (P(+k+2-2m)! ij

^tj+3,2 = k+2,2 k+32 be the interpolation space

Let H ( H) = (IQ))e,

by the K-method [10] for t = k - 1 + e. Then T is linear operator:

^t +3,2
HB (0) , H(i ") with norm

8 8 i,j

2 IT 2 e2t= 1Th t+3,2 - _

H8)1( i,j)

r(p1-!j+1) 32
p l (3A 2tj 2(2-m-8)

r( i-(p +t.+3-2m) '-2 i,j

(see the proof of Theorem 4.1). Thus for a real number t., 1 5 t r: P

12 rp-t +l) (I)2td2(2_ma)jjull2
(6.23) lIDm(u- i,i) H0 ( p +t +3-2m) ^d( l t +3,20 (,l)\PRt+3Db 2(n2)

i,j H8 Q

By (2.3)

(6.24) luil + Ct1/2 d r(t +2).
t +32

* H~ (p
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4 For j = is always chosen as bilinear interpolation of U at
i'l

vertices of Q. Letting i (i ,y)) we have by Lemma 3.6

and the standard scaling argument

lu-P 11 C CllU 1-I
H(el ) H (S)

i 5Cu ~- l 9

HS (S)

[-l

where c -- r , r is the distance between point ( ,n)E Sand Mi9 (0,0),

and

(6.25) : 1 Ch 1IJu 2
i-ll i,,-H Hh~~ul 2,2 (

To achieve continuity of the polynomials on two adjacent elements we use the

same procedure as we used in the previous chapter. We construct in this way

the function p E SP ' I(0O) such that

1 2 M 2(1_a)
(6.26) Ilu- 1 - C I h I1U12,2

H (a) i=l H ' M~)

(3A) 2j (pj-tj+l) 21
+ I (l~j 2 R(p +t -1) ij t +3,2

1f -I01J H H
1<j Sn+1

n+l P
< CU 2(I-a)(n+21{(1+)lj IF3Ad'c I Jp6}

J-2 2(-8j

wher 1-- oa Ijj an le ')- l 2 a
where tj aZ:1T 81:d 2:::0 (l)l . It has been proved that

1+a 2
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%2

min F(d ,a) = F(d 2 m < .
a /4+d2

It can also be shown by (6.5), (6.7) and (6.8) that l(j) 5 K, for

1 j f- n+1 and some K > 0 independent of N. Letting

* c. = max{-, }, p. = max(2,[j]), j > 2 with v satisfying.... 3 P 4+(3Ad) 2

(5.15) we have from (6.26)

!s C (1-B) (n+2)

H (Q)

3 1/3 1 1/3,*'2: ~-2(1-B) (__l)/ n(l).NI/
N2 r

f_ Ce

" with C independent of N and U = max(l,p).

2
Theorem 6.2. Let u E B (Q) with D = r , 0 < 8 < 1, and 0 be a

dS

* polygonal domain 0 contained in a unit disc and with a vertex at origin.

Let 0n = { i.j' 1 < i _ l(j), 1 _< j _< n+l} by a curvilinear triangular° 19j

geoemtric mesh satisfying conditions l)-4) in Section 4.4. Assume that the

mapping M.. of T =( ,n) l0<n, O<E, +n<!} onto 0i,j

x = p ~ E1inj

y = in T

is such that

. i JD P,jI < Alalhi,j for any jai = k 1 1, 1i I(j), i5j !En+l,

where A is independent of i, j and k. In addition assume that l .
i ,

. can be extended to standard square S =(0,1) x (0,1), M (S) c P preserving
i~j

the properties of M on T and that
ij

.9
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d i dist(M i,j(S),0) t i0di,j for all i and j

PQ.( , n P ,(,n)~ I~
with constant K0 > 0. Then there exists O (xy) E (S-' & (n)@S' ()) n H()

with degree vectors P and _ in which pi,j = q i,j =  pj = P = max(2,[jUI)

for j 1 2 and 11 satisfying (5.15), pi'l = il = 1, and with degree

vectors i_ and Q in which pi,j = i9 = 2p j-1  such that

ff:II i 
b C 

/ 3

with C and b independent of N.

Proof. The proof is analogous to the proof of Theorem 6.1.

Remark 1. We assumed in Theorem 6.2 that the mapping can be extended. In

contrast to the mapping of T where one-to-one mapping is assumed together

with condition 4) we do not need these assumptions to be satisfied on the

entire S, we need only that M i,j(S) C Sj.

Remark 2. Assume that 2 is a simple parallelogram or triangle only and

assume that u E 2 but such that the domain of analyticity can beBo,d

extended into a small neighborhood of S1. If Q is a parallelogram

and the mesh consists of one element only then the rate of the p-version is

exponential. It follows immediately from our analysis. If Q is a triangle

and the domain consists of one (triangle) element only then we cannot

conclude directly from our theory that the rate of convergence is exponential.

Remark 3. In Theorems6.1 and 6.2 we assumed that the domain f is a polygon.

Obviously this assumption is not essential.
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Remark 4. As in the previous chapters we can consider in Theorems 6.1 and

6.2 uniform degree of elements and get the exponential rate of convergence too.

Remark 5. The quadrilateral is the special case of a curvilinear quadrilateral.

Suppose that (xiYi ) are the vertices of Q. The mapping of S = (0,1) x(0,1)

onto 0 is

x = 4( ,l) = xI + (x2-xl) + (x4-xl)n + (xi-x2+x3 -x4) fl

Y = (') = Yl +(2-Y + (Y4-Yl)) + (y1-Y2+Y3-Y4) "

Obviously (:j.21) holds.

Remark 6. In the mesh shown in Fig. 6.1 the curvilinear triangular and

curvilinear quadrilateral elements are combined. This kind of mesh is

important in practice.

y
yy

x I

S0.5 -- 7

-o io

Figure 6,1 Figure 6.2

Curved Geometric Mesh Mapping of Standard Triangle

. " .;' ', ' .... . .'." ." , t-'; '... - -, " .. ",-. -',,'""'. . " ,,** v .-*-.',*-." . ***t*, . *. -. .. . -".," ""
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The mapping of S - (0,1) x (0,1) onto the curvilinear quadrilateral

element M1  is

7T

y = - h( (-q+q) sin7(r,4

with h = qTr/4 and (6.21) is satisfied.

The mapping of T onto curvilinear triangle (element 2) can be defined

.! in various ways. Let us mention one

x = = q (n cosI + - (COS -) -T1 COS -r

= = q 2 ( sin 1* -- (in 2- n sin ))
4 1-n ( 4i 4-

Observing that

(cos 4 - co 4 1--

. and

(sin -n - T sin 7)

4 4 1-n

2
is analytic at n = 1 and we easily see that with q h (6.21) is

satisfied. If is also easy to see that M(S) C Q (see Fig. 6.2).

Remark 7. Consider an element Q with vertices (xiYi), 1 5 i - 4 and

curvilinear edges yi (see Fig. 6.3), Yi's are described by

a I , .. , % • ,a-. % , • ,, , . ,, ' ., ' , " . , '. . . . . , ' . - ' . . . . . * .. . - . a- . -,. . . .
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i gi

for 0 5 f- 1, i = 1,3
Y i -f

and

for 0 - n< 1, i = 2,4

Qy~ f Wn

where gi and fi'i 1 _ i n 4 are infinitely differentiable, and

(k) (k) k
Igi 1) If, i 1 - h A for 1 :- i !E 4, any k a 0

and

Igi-gi+21 , Ifi-fi+ 2 1 < Ah for i = 1,2

* with A a 1 independent of k, h and h being the arc length of the

.. longest curvilinear edges of Q. Then the mapping of S = (0,1) x (0,1)

*,' onto 2 by a blending function is constructed as follows:

i "~ 2 '3 4"
= x - ( ,r) = Xl( )(1-n) + 2 (r) + 3 ( )n +~ 4(n)(l- )1 4

y - p( ,rl) y 1 () (l-n) + y2(n) + Y3 ()n + Y4(n)(1-

-Y 0l-0)(1-n) y 2 (l-) - y3 n1 -Yn(1-)

2!
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:: Y 3 (C)

I 4 3 (x 4 1Y4 ) 4 3 (x3 Y3 )

44 37f 
2 ( 7

x4(77)} 

X2 (77)
S 74 (711 2

"(1141 xflY(C (x2,Y2)
21

0Y

Figure 6.3

Mapping of Standard Square

Then it is easy to see that

= (1-n)Xl(E) + x(E) + x 2 (n) - 4 (n) + (xl-X2 )(l-n) + (x4 -x 3)n,

JI41 < 5Ah;
.. ~~Z +~ ,-x M.

-.- nX= + qx= + T(I)

I*~ ~ T I, *£l 
- 2 A h , for Z > 2,

i~lq --x2( ) + x3(E) + (x2-Xl) + (x4-xl)' , - 4Ah;

)ZTm =0 for inI, Z i or Z > 2 m>.

Similarly we can see that

A
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I 1m
1' 4 nml -  2Amh for m _ 2,

14 I f: 5Ah.

These inequalities are also true for 1P. Hence (6.21) holds.

Remark 8. In the theorems above we assumed that the singularities are
M

located in the vertices of the domain Q i.e., DB(x) = TTIx-AI i when
Z=1

A. are the vertices of 0. Assume now that A. are located outside of Q.
- 1

Then it is possible to show that 11ell :- c N . This rate of convergence is

achieved by the p-version when the size of the minimal element of the optimal

mesh is not going to zero as p 4 C.

0 '0 4 " t ' q- " ,_ " " ot°o .' p '- '' , ' o '""''""' o '" . '' - o ' ' ' ' ° - . ' ' "" ° ' '" .
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7. NUMERICAL RESULTS

In this chapter we will discuss the numerical results for the solution

* of a model plane elasticity problem. We selected the model of a cracked panel

*loaded by such tractions that the exact solution is the first and second mode

of the stress intensity factor solution. This problem was selected because

it characterizes the difficulties cf the usual engineering problems. We will

compare the performance of the h, p and h-p versions of the finite

element method by focussing on the accuracy measured in the energy norm.

The purpose of the numerical computation is the following:

1) Our estimates are upper estimates which have asymptotic character.

It is important to see the numerical behavior of the error, its asymptotic

"- range, the size of the constants characterizing the error and the maximal

- accuracy which is practically achievable.

2) The h-p version is characterized by the mesh factor a of the

geometric mesh and the degree factor 11 governing mesh size and the growth

of the element degrees, respectively. Numerical results will show the

sensitivity of the accuracy on a and p, the values of the optimal factors

a and j leading to the highest accuracy.

3) Our theory does not allow us to distinguish between performance of

elements of various type, the curvilinear and rectangular (resp. triangular).

The computer time is smaller for rectangular or triangular elements thani for

curvilinear elements. Therefore the question arises whether curvilinear

*elements in the neighborhood of the crack can improve the accuracy because the

singularity has radial character.

4) It is known that the p-version is very insensitive to the size of the

d Poisson ratio (nearly incompressibility) (see [8 ], [22]). Numerical

*solution will show the effect of the Poisson ratio on the accuracy of the

%%
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solution in the case of the h-p version,

5) The standard finite element programs are based on the h-version

with low order elements. Several hundred finite element programs have

already been developed. One of the most popular packages is NASTRAN

in its various versions, for example MSC/NASTRAN. Other widely used packages

are for example, ADINA, ANSYS, STRUDL, GIFTS, PAFEC, etc.

There is only one code based on the p and the h-p versions, the

code PROBE. The architecture of this program is different from the above

mentioned. It utilizes the hierarchic type of elements, computes simul-

taneously solutions of different degree elements, etc. We will make some

(crude) comparison of computation by PROBE with the h-version.

The theory and computation addresses only the performance with respect

Lo the error measured in the energy norm. Although in practice other

measures are essential, the energy norm performance is obviously the starting

point of main theoretical importance.

The computation of the h-p version has been done by the program PROBE of

NOETIC TECHNOLOGIES, Inc., St. Louis. (See [211).

The h-version computation has been done by the adaptive program FEARS

*developed at the University of Maryland. (See [14] [19]).

We shall consider the plane strain problem of two dimensional elasticity

(homogeneous,isotropic material) with E and v denoting the Young's

modulus of elasticity and Poisson ratio respectively (E>0, 05 <.5). The

domain D under consideration is a square panel with a crack as shown in

Fig. 7.1.

. • .. ' . • ° . ° . • ° 6P .X• ° ° .•%°. .... o %, • •. .
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D

-0 0 I x
* -I

Figure 7. 1

Cracked Panel

Let U = (u,v) be the displacement vector, T = )be the

stress tensor and T be the traction vector. The displacement vector U

satisfies the Lame-Navier equations

-(X+1) + =) - nu = 0

DXaDx dy,

(7.1) in D

(au + v V=0ay ax Dv-(A+ j) -(+-- -Mv=0

and the boundary condition

(7.2) TI =D = ( )
- Ev

where n is the unit outside normal to the boundary DD. X = (l+v ) (l-2v)
E

and 2(1+v) are the Lame coefficients. The hilinear form associated

with (7.1) and (7.2) is

[,.

S.
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du aw I a 2 X au 3V aw 2(7.3) B(U,W) + {iy(u W +--(- -+ +fD ax ax 2 3xx  ayS av x

w aw1

+y R -a- +"V !- 4 -+ dy -

x +  ax +  )}dxdy

with U - (u,v), W - (W1 ,w2 ) E HI(D) x HI(D) and the linear functional

F(W) f (f w + fW ds.

The weak solution U E H (D) x H (D) satisfies

(7.4) B(U,W) = F(W) for any W E H (D) x H (D).

. The strain energy functional G(U) is

E3u 2 + u av
7.5 ) 2(i-2)(I+) D aYx 2 ax ay

1-2v) au _ 2

+ 1-2V (3y + v) 2}dxdy

- B(U,U).

We will consider problem I and problem 2 when the imposed tractions

* lead to the symmetric and antisymmetric mode of the stress intensity

solution. For both modes i = 1,2 the solution has singular behavior at

the tip of the crack (see (19]).

i" ui  
r l1/ 2  i ( )

V, r~"
" ~3/- 2,2rI 2 li@

and hence ui,v, > 0, and ui, vi E H
2 '2 (1) < < 1

..
9.." '- ' ";' J ' 9" - "-- ."'-, :."".---"''..:.. .- '.
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The solution of Problem 1 has to be augmented by the conditions

Ul(0,0) = V (0,) - 0

fixing the rigid body motion. For the solution of ProbLem 2 we impose the

conditions

u 2 (0,O) = 2(0,0) - v2 (-1,0) = 0

fixing the rigid body motion. The strain energy of true solutions Ui  for

E = 1.0 and v = 0.3 is

G(U ) = 0.6017796916, G(U2) 0.2370646876.

By U i, i = 1,2 we denote the exact solutions and by UFE i - 1,2,•0 yUoUFE, 12

*" the finite element of Problem 1 and Problem 2. The error of the finite element

solution will be

: i - i
(7 .6) e i = U FE "

0 FE

The energy norm of the error IleillE is directly related to the strain energy

of the exact and finite element solution

(7.7) Ilei12  = G(Ui) - G(Ui)= i(B(Ui,Ui) - B(U U I ))
i E 0 FE 2 0 0 FE FE

and the relative error in energy norm is defined as

(7.8) eilER GiE .100%.
IIER =G1IJ i) 1/2

0

* We used geometric meshes with the factor a for the p and h-p version

and studied the performance of two types of meshes A and C shown in

Fig. 7.2 and Fig. 7.3.

ia

*.** **.*.** ,*.* * * ***** r-*:< :* ,.* ..
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5Let us mention that the size Hi n of the smallest element is a
-4

For C = .15 we get hi n = .759 x 10 and for a = .08 we get h n

.327 x 10-5 with h = 1. The ratio between the size of the largest andmax

5smallest element is hence more than 10 . The computation has been performed

by the PROBE program with uniform degree of elements in double precision on

Appolo 420 (work length of double precision is 15 decimals). The computation

for the h-version was implemented by the program FEARS on UNIVAC 1100 (in

single precision). By N we denote the number of degrees of freedom.

As indicated in the previous chapter there are some constant b and C

independent of N such that for the h-p versions we have

C. -b N
1 /3

(7. 9) l~eiIER - .U e , i = 1,2.
:2. Iflu II0QE

Table 7.1 and Table 7.2 show the relationship between IleijiER, and

N, p, n, on mesh A with a = .15 and U = 1 (i.e., p = n). The

relationships are plotted in Fig. 7.4 and 7.5 on ln-cubic root scale. The

*curve of the h-p version is almost a straight line which is the envelope of

six curves of the p-version for 1 : n ! 6. This means the asymptotic

- property is achieved already for n = p = 2. The constants bi and Ci,

i = 1,2 are numerically given in the tables. For p = 6 we have b, = 0.670,

b = 0.668, and 1 = 1.688, 2 1.306.
21 fU1 flE

In Fig. 7.6 we show the dependence of the error on a. We see that the

best value of a is close to (Yf-l) 2  .17 which is the theoretically

.,' optimal value in one dimension (see [16]).

Fig. 7.6 shows the dependence of the error on P characterizing the

* relation between n and p.

-?,.** *v-m %
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STABLE 7.1

Relationship between iellIE,RN,n,p,bI and C1 for the h-p version

Prcblem 1 (E=l,v=0.3) on Mesh A,a=0.15,u=1

-Mesh P N N1 3  jellIR b, C /OIRU E

A 9 2.08 60.92 .741 1.455

A 2 48 3.63 20.23 .740 2.303
2 -

A3  3 121 4.95 7.61 .776 2.098

A4 4 256 6.35 2.57 .720 1.810

A5  5 477 7.81 .90 .670 1.683

A 6 6 808 9.31 .33 .670 1.688

TABLE 7.2

Relationship between le211E,RN,n,p,b2 and C2 for the h-p Version

Problem 2 (E=1,v-0.3) on Mesh A,a=0.15,u=1

Mesh P N N 1/ 3  Ie2IR b 2 II2 E

A1  1 8 2 43.74 .626 1.664

A2  2 47 3.61 15.97 .742 1.781

A3  3 120 4.93 5.91 .772 1.592

A4  255 6.34 2.02 .718 1.395

A5  5 476 7.81 .71 .668 1.309

A6  6 807 9.31 .26 .668 1.306

[ ?- ~~~~~~~~~.> :......................--... :.. .. ... .... J .. . . -,. ....:..-..,.... ...-. .. . ... ....... . ..
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Figure 7.7

Relative Error in Energy Vorm vs. Degrees of Freedom

for the h-p Version

Problem 2 (E=l, v-.3) on lesh An, 1n<6, o-.15

1 pn-1., j.8-1.0, 2 p-n, pl,

4 p-n+l, pi.0-1.2, 3 p-rn+2, u-1.2,-1.4,

5 p-n+3, u=1. 4 -1. 6
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Table 7.3 gives the values of bi and C. We see that the value

P= 1 is the best one and the sensitivity of the error on 1 is not large.

The results for Problem 1 and Problem 2 are very similar. Problem 1 has

been computed with meshes A and C. To achieve the same accuracy, mesh C

required more computer time than mesh A.

It has been observed and rigorously analyzed in [81,[22] that the

p-version is insensitive to Poisson ratio V. Numerical results show that

the h-p version is insensitive to change of Poisson ratio v. In Fig. 7.8

the curve for V = 0.49 is almost parallel to that for v = 0.3.

The comparison of any codes is a very delicate question because of the

aims of computation, the reliability of the computed results, the ratio between

the human and computer cost in the project, etc.

We address here crudely the cost of achieving the same accuracy by the

h-version (elements of degree 1) with nearly optimal mesh and h-p version

with nearly optimal mesh and degrees of elements. The comparison is based on

the computation of Problem 1 program FEARS and PROBE (see Fig. 7.9).

The error of the h-version with the optimal mesh is asymptotically (p = I)

IlellE - C2N-

and for the h-p version we have

-b NI /3

ellE C e 1

The computer cost for the h-version is roughly

W - C + DN

% ...
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TABLE 7.3

Relationship between Coefficients biC (i-1,2) and u

Problem 1 and 2 (EI,v-.3) on Mesh A ,a.15 lcnr6
n

1 0.8-1.0 1.0-1.2 1.2-1.4 1.4-1.6

p n n-I n+1 n+2 n+3

b 1.670 .718 .680 .674 .667

R jfu0E 1.689 2.42 2.330 3.281 4.778

b2 .668 .654 .683 .680 .664

C2 IU2IE 1.306 1.206 1.917 2.734 3.563

-- 0

N

25 100 200 400 600800 000
50 -- I 0 I

.- -- 4.-- -

00.5

20NN (1491

02 -3I 57 9

3 11

ii NI13

Figure 7.8

Relative Error in Energy Norm vs. Degrees of Freedom

for the h-p Version

Problem 2 (E-1,v-.3,.49) on Mesh An l<6 , a-.15

I ". .1a * -' , ' ' ,,' , mf o• --° * -.• • ....., ........
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Relative Error in Energy Norm vs. Degrees or Freedlom

for the h, p, h-p Version

Problem 1 (E-In,v-.3) with Mesh Factor G-.15
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with ah = 1.5 - 2. FEARS uses elimination method and ah 1.9. For the

h-p version in our case the total number of arithmetic operations is

asymptotically

W = C + DN7
/ 3

1/3 2 2N )a

when N independent matrices (condensation) of order p2 (N2/3 are

decomposed and additionally a band matrix of size N and band 0(N

*. is decomposed. PROBE uses the front solver. The cost of computation of the

microstiffness matrices is also O(N 7/3). The main cost is in the data

management.

Assume that effectively

W N a h

" for the h-version with optimal mesh and

W Nhp

for the h-p version with optimal mesh. We can compute

In Nh)

In N (E

h,p

which is the ratio between ah and 6h,p  leading to the same accuracy for

given relative error C. By Nh () (resp. Nh,p ()) we denote the number

of degrees of freedom for achieving the desired accuracy. Toble 7.4 shows the

accuracy e, Nh(e), Nh,p(e) and q$(C).

The hierarchic structure of the elements leads to hierarchic elimination

so that the computation of lower degree elements (for fixed mesh) is obtainable

by O(N) operation.
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TABLE 7.4

Comparison of the Number of Degrees of Freedom for Ile IIE = c%

between the h-Version with Optimal Mesh, and the h-p Version with

Mesh An , 1<n 6,a=.15,ul on Problem I (E-1,v-.3)

_ 30 20 0 5 3 1 0.5 0.33 0. I

N h () 56 118 446 1397 3,883 34 945 139 782 320 892 3 494 513
-- --_

N (c) 29 48 96 165 232 450 657 808 1,367"" h, p

4 (c) 1.195 1.232 1.337 1.418 1.517 1.712 1.826 1.894 2.087

TABLE 7.5

Estimated Error of the h-p version

Problem 1 (E=l,v=.3) on Mesh An,ln-.6,ai.l5,i=l

i: n II~le  ItellE eftII IElz R  I (le 11E- Il'1 )/Ilellrl
El i i

1 2.9596E-1 2.9662E-1 60.83 60.92 .2189

" 9.8774E-2 9.8511E-2 20.28 20.23 -.2669

3 3.7033E-2 3.7055E-2 7.606 7.611 .0606

4 1.2489E-2 1.2500E-2 2.565 2.567 .0926

5 4.3359E-3 4.3691E-3 .891 .897 .6689

* For n-5 the ratio A(4)/6(5) is usedin formula (7.13) and (7.14)

instead of 6(5)/A(6).
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Table 7.4 shows that 1% accuracy is very expensive to get by the

h-version with the elements of degree 1. The accuracy 0.5% is probably

not achievable at all. The h-p version allows us to use a relatively very

small number of elements to obtain high accuracy.

The mesh design, although critical, is not too dependent on the

geometry provided one is refining the mesh geometrically with a = .15

around every singular point.

In practice the true solution U0  is unknown, but error measured in

the energy norm can be estimated from the energy norm of the finite element

2 2solution. Let E0 = fIU0IIE and E(n) = JIUFEIIE on Mesh An, 1 n n ! 6.

By (7.1) we have for any p > 0 asymptotically

E(n) = E0 - Ce- bn.

Therefore

A(n) = E(n+l) - E(n) = Ce-bn (-e-b),

b n A(n)

b nA(n+l)'

C A(n) .n. l A(n+l)C=A(n) • )n/(l - n ) "

A (n+l) A(n)

(7.10) 1l2 = A(n)

A (n)

is the a-posteriori estimation of the accuracy. Further

____ e___F __ 1 1
(7.11) lieE,R  2 - E(n) ( A(n+l)/2,.(E(n)+11e 11E) 2  ( e + 2)/2- (14 A(n) A (n) 2iie/2 +.(l/ 2 (+Z n (- A(
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Table 7.5 shows that the true error in energy norm is estimated by

ellewith E E ' 1%. Such high reliability of the error estimation is
I E wi H ellE

achieved for every n because the h-p version has exponential rate of

convergence for very low n and p and stably maintains this behavior

through all n.

Although the above numerical results are in no way exhaustive, they

do suggest the following:

(1) The exponential rate of convergence of the h-p version agrees in

practical accuracy range with that predicted by the asymptotic approximation theory.

The asymptotic rate can be achieved by low p and n, e.g. n = p = 1,2.

(2) The coefficient b is related to singularity as well as the

factor a and P. It seems that a 4 0.15 is an optimal one. Optimal

P for uniform p depends on a, , d mesh as well as N. The computation

on mesh A , 0 .08, 1 S n f 6 and mesh C , a = .15, 1 :5 n ! 6 shows
n n

that optimal 4 increases with N. If the asymptotic value p0 of the

optimal i is known, one should select a value for V less than

3) As the p-version, the h-p version is insensitive to change the

Poisson ratio in plane elasticity equation. For v near 0.5, the

exponential rate of convergence can be achieved for some low n and p.

The curve of the h-p version is shifted to the right without affecting the

coefficient b;

4) Since the exponential rate is achieved for low n and p, the

a-posterior error estimate coincides with the true error very well from low

p and n to high p and n.

5) If a higher accuracy is required then only h-p version is a

practical method.



83

REFERENCES
C

[1] Babuska, I., Aziz, A. K.: On the angle condition in the finite element
method. SIAM J. Numer. Anal. 13, (1976), 214-226.

[2] Babuska, I., Aziz, A. K.: Survey lectures on the Mathematical foundations
of the finite element method. The Mathematical Foundations of the Finite
Element Method with Application to Partial Differential Equations. Edited
by A. K. Aziz, New York: Academic Press, 1972, 3-359.

[3] Babuska, I., Dorr, M. R.: Error estimates for the combined h and p
version of finite element method. Numer. Math. 37, (1981), 252-277.

[4] Babuska, I., Gui, W., Guo, B., Szabo, B.: Theory and Performance of the
h-p Versions of the Finite Element Method. To appear.

[5] Babuska, I., Kellogg, R. B., Pitkaranta, J.: Direct and inverse error
estimates for finite elements with mesh refinement. Numer. Math. 33,
(1979), 447-471.

[6] Babu'ka, I., Suri, M.: The optimal convergence rate of the p-version of
the finite element method. To appear.

[7] Babuska, I., Szabo, B. A., Katz, I. N.: The p-version of finite element
method. SIAM J. Numer. Anal., 18, (1981), 515-545.

[8] Babu'ka, I., Szabo, B. A.: On the rate of convergence of finite element
method. Iternat. J. Numer. Method Engrg. 18, (1982), 323-341.

[9] Babuska, I., Szabo, B. A.: Lecture notes on finite element analysis.
In preparation.

[10] Bergh, I., Lofstrom, J.: Interpolation spaces. Berlin-Heidelberg-New York:
Springer-Verlag, 1976.

[11] Cialet, P. G.: The finite element method for elliptic problems. Amsterdam:

North-Holland, 1978.

[12] Dorr, M. R.: The approximation theory for the p-version of the finite
element method. SIAM J. Numer. Anal. 21, (1984), 1180-1207.

[13] Dorr, M. R.: The approximation theory for the p-version of the finite
element method II, SIAM J. Numer. Anal. To appear.

[14] Gignac, D. A., Babuska, I., Mesztenvi, C.: An introduction to the FEARS
program. David W. Taylor Naval Ship Research and Development Center Report
DTNSRDC/CMLD-83/04, 1983.

[15] Gelfand, I. M., Shilov, G. E.: Generalized functions. Vol. II. New York,
Academic Press, 1964.

I " "." " " ' .." ' " " ." " , ''''''"'' ''' " ' ., ' ..-, .... '' , "v ''''-'-'.' ....,,.,.i.]. -' ' , ,



84

[16] Gui, W., Babuska, I.: The h, p and h-p versions of the Finite Element
Method for One Dimensional Problem, Part 1: The Error Analysis of the
p-Version. Tech. Note BN-1036; Part 2: The Error Analysis of the h and
h-p Versions. Tech Note BN-1037; Part 3: The Adaptive h-p Version.
Tech. Note BN-1038, IPST, University of Maryland, College Park, 1985.

[17] Guo, B., Babuska, I.: Regularity of the solution of elliptic equations
with piecewise analytic date. To appear.

[18] Gradshteyn, I. S., Ryzhik, I. M.: Table of integrals series and products.
London & New York: Academic Press, 1965.

[19] Mesztenyi, C., Szymczak, W.: FEARS users' manual for UNIVAC 1100. Tech.
Note BN-991, IPST, University of Maryland, College Park, 1982.

[20] Muskhelishvili, N. I.: Some basic problems of the mathematical theory
or elasticity (P. Noodhoff, Gronigen, Netherlands, 1963).

[21] Szabo, B. A., Myers, K. W.: PROBE users' manual. NOETIC TECHNOLOGIES,
Inc., St. Louis, MO, Nov., 1984.

[22] Vogelius, M.: An analysis of the p-version of the finite element method
for near incompressible materials, uniformly valid optimal error estimates.
Numer. Math., 41, (1983), 39-53.

dP
.i



The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

* To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

* To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

- To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

* To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

* To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor 1. Babulka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.

N.

..

/ . ., . .. ,.. . .. . .. .• .- .-......... % . ....... . . ... ... .



FILMED'

9-85

DTIC
i • o . % * . . . . . . . . . . . . .... . ...

•• • " • ° • 
-

- . *
w

* . **


